Acta Psychologica Sinica ›› 2023, Vol. 55 ›› Issue (6): 968-977.doi: 10.3724/SP.J.1041.2023.00968
• Reports of Empirical Studies • Previous Articles Next Articles
CUI Fang1, LIAO Xinming2, YANG Jiawang1, LIU Jie1()
Published:
2023-06-25
Online:
2023-03-10
Contact:
LIU Jie
E-mail:ljier06@gmail.com
CUI Fang, LIAO Xinming, YANG Jiawang, LIU Jie. (2023). The neural mechanism of the impact of mathematical anxiety on the math conceptual knowledge: Evidence from a resting-state fMRI study. Acta Psychologica Sinica, 55(6), 968-977.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2023.00968
Test | Index | Mean (SD) | Cronbach’s α |
---|---|---|---|
Verification of verbal arithmetic principles | Number of Correct Responses | 18.98 (5.87) | 0.84 |
Word semantics | Number of Correct Responses | 40.43 (7.68) | 0.83 |
Non-verbal matrix reasoning | Number of Correct Responses | 30.40 (6.76) | 0.71 |
Table 1 Descriptive statistics of the cognitive tests
Test | Index | Mean (SD) | Cronbach’s α |
---|---|---|---|
Verification of verbal arithmetic principles | Number of Correct Responses | 18.98 (5.87) | 0.84 |
Word semantics | Number of Correct Responses | 40.43 (7.68) | 0.83 |
Non-verbal matrix reasoning | Number of Correct Responses | 30.40 (6.76) | 0.71 |
Figure 3. A. The significant correlation map between whole-brain rsFC and the performance on the arithmetic principles (AP). B. Correlation between rsFC for HIPS-Insula and AP scores.
[1] |
Ansari D., Fugelsang J. A., Dhital B., Venkatraman V. (2006). Dissociating response conflict from numerical magnitude processing in the brain: an event-related fMRI study. Neuroimage, 32 (2), 799-805.
pmid: 16731007 |
[2] |
Ashcraft M. H., & Krause J. (2007). Working memory, math performance, and math anxiety. Psychonomic Bulletin & Review, 14, 243-248.
doi: 10.3758/BF03194059 URL |
[3] |
Basten U., Stelzel C., & Fiebach C. J. (2011). Trait anxiety modulates the neural efficiency of inhibitory control. Journal of Cognitive Neuroscience, 23(10), 3132-3145.
doi: 10.1162/jocn_a_00003 pmid: 21391763 |
[4] |
Binder J. R., Desai R. H., Graves W. W., & Conant L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767-2796.
doi: 10.1093/cercor/bhp055 URL |
[5] |
Bishop S. J. (2007). Neurocognitive mechanisms of anxiety: an integrative account. Trends in Cognitive Sciences, 11(7), 307-316.
doi: 10.1016/j.tics.2007.05.008 pmid: 17553730 |
[6] |
Bishop S. J. (2009). Trait anxiety and impoverished prefrontal control of attention. Nature Neuroscience, 12(1), 92-98.
doi: 10.1038/nn.2242 pmid: 19079249 |
[7] |
Bishop S. J. (2009). Trait anxiety and impoverished prefrontal control of attention. Nature Neuroscience, 12(1), 92-98.
doi: 10.1038/nn.2242 pmid: 19079249 |
[8] |
Boccia M., Nemmi F., & Guariglia C. (2014). Neuropsychology of environmental navigation in humans: review and meta-analysis of FMRI studies in healthy participants. Neuropsychology Review, 24(2), 236-251.
doi: 10.1007/s11065-014-9247-8 pmid: 24488500 |
[9] |
Cheng D., Zhou A., Yu X., Chen C., Jia J., & Zhou X. (2013). Quantifier processing can be dissociated from numerical processing: evidence from semantic dementia patients. Neuropsychologia, 51(11), 2172-2183. doi: 10.1016/j.neuropsychologia.2013.07.003
doi: 10.1016/j.neuropsychologia.2013.07.003 pmid: 23867350 |
[10] |
Cohen Kadosh R., Henik A., Rubinsten O., Mohr H., Dori H., van de Ven V., Linden D.E., 2005. Are numbers special?: the comparison systems of the human brain investigated by fMRI. Neuropsychologia, 43 (9), 1238-1248.
pmid: 15949508 |
[11] | Davydov V. V. (1982). The psychological characteristics of the formation of elementarymathematical operations in children. In T. P. Carpenter et al. (Eds.), Addition and subtraction: A cognitive perspective (pp.224-238). Hillsdale, NJ: Lawrence Erlbaum. |
[12] |
Dehaene S., Piazza M., Pinel P., & Cohen L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3-6), 487-506.
doi: 10.1080/02643290244000239 URL |
[13] |
Dosenbach N. U., Fair D. A., Cohen A. L., Schlaggar B. L., & Petersen S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12(3), 99-105.
doi: 10.1016/j.tics.2008.01.001 pmid: 18262825 |
[14] |
Eger E., Sterzer P., Russ M.O., Giraud A.-L., Kleinschmidt A., 2003. A supramodal number representation in human intraparietal cortex. Neuron, 37, 719-726.
doi: 10.1016/s0896-6273(03)00036-9 pmid: 12597867 |
[15] |
Etkin A., Prater K. E., Schatzberg A. F., Menon V., & Greicius M. D. (2009). Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Archives of General Psychiatry, 66(12), 1361-1372.
doi: 10.1001/archgenpsychiatry.2009.104 pmid: 19996041 |
[16] |
Foley A. E., Herts J. B., Borgonovi F., Guerriero S., Levine S. C., & Beilock S. L. (2017). The math anxiety-performance link: A global phenomenon. Current Directions in Psychological Science, 26(1), 52-58.
doi: 10.1177/0963721416672463 URL |
[17] |
Fox M. D., Snyder A. Z., Vincent J. L., Corbetta M., Van Essen D. C., & Raichle M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences, 102(27), 9673-9678.
doi: 10.1073/pnas.0504136102 URL |
[18] |
Hembree R. (1990). The nature, effects, and relief of mathematics anxiety. Journal for Research in Mathematics Education, 21(1), 33-46.
doi: 10.2307/749455 URL |
[19] |
Hartley C. A., & Phelps E. A. (2012). Anxiety and decision-making. Biological Psychiatry, 72(2), 113-118.
doi: 10.1016/j.biopsych.2011.12.027 pmid: 22325982 |
[20] |
Kazelskis R., Reeves C., Kersh M. E., Bailey G., Cole K., Larmon M., Hall L., & Holliday D. C. 2001. Mathematics anxiety and test anxiety: Separate constructs? Journal of Experimental Education, 68, 137-46.
doi: 10.1080/00220970009598499 URL |
[21] |
Kim M. J., & Whalen P. J. (2009). The structural integrity of an amygdala-prefrontal pathway predicts trait anxiety. Journal of Neuroscience, 29(37), 11614-11618.
doi: 10.1523/JNEUROSCI.2335-09.2009 pmid: 19759308 |
[22] |
Liu J., Zhang H., Chen C., Chen H., Cui J., & Zhou X. (2017). The neural circuits for arithmetic principles. Neuroimage, 147, 432-446.
doi: S1053-8119(16)30757-1 pmid: 27986609 |
[23] |
Liu J., Yuan L., Chen C., Cui J., Zhang H., & Zhou X. (2019). The semantic system supports the processing of mathematical principles. Neuroscience, 404, 102-118.
doi: S0306-4522(19)30070-3 pmid: 30710668 |
[24] |
Lyons I. M., & Beilock S. L. (2012a). When math hurts: math anxiety predicts pain network activation in anticipation of doing math. PloS One, 7(10), e48076.
doi: 10.1371/journal.pone.0048076 URL |
[25] |
Lyons I. M., & Beilock S. L. (2012b). Mathematics anxiety: separating the math from the anxiety. Cerebral Cortex, 22(9), 2102-2110.
doi: 10.1093/cercor/bhr289 URL |
[26] |
Namkung J. M., Peng P., & Lin X. (2019). The relation between mathematics anxiety and mathematics performance among school-aged students: a meta-analysis. Review of Educational Research, 89(3), 459-496.
doi: 10.3102/0034654319843494 URL |
[27] |
Nieder A., & Dehaene S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185-208.
doi: 10.1146/annurev.neuro.051508.135550 pmid: 19400715 |
[28] |
Nitschke J. B., Sarinopoulos I., Mackiewicz K. L., Schaefer H. S., & Davidson R. J. (2006). Functional neuroanatomy of aversion and its anticipation. Neuroimage, 29(1), 106-116.
doi: 10.1016/j.neuroimage.2005.06.068 pmid: 16181793 |
[29] |
Organization for Economic Co-operation and Development. (2013). PISA 2012 results: Ready to learn: Students’ engagement, drive and self- beliefs (Vol. III). Paris, France: Author. doi:10.1787/9789264201170-en
doi: 10.1787/9789264201170-en |
[30] |
Paulus M. P., & Stein M. B. (2006). An insular view of anxiety. Biological Psychiatry, 60(4), 383-387.
doi: 10.1016/j.biopsych.2006.03.042 pmid: 16780813 |
[31] |
Preacher K. J., & Hayes A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879-891.
doi: 10.3758/brm.40.3.879 pmid: 18697684 |
[32] |
Pinel P., Dehaene S., Riviere D., LeBihan D., 2001. Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage, 14, 1013-1026.
pmid: 11697933 |
[33] |
Pizzie R. G., & Kraemer D. J. (2017). Avoiding math on a rapid timescale: Emotional responsivity and anxious attention in math anxiety. Brain and Cognition, 118, 100-107.
doi: S0278-2626(17)30088-X pmid: 28826050 |
[34] | Pizzie R. G., Raman N., & Kraemer D. J. (2020). Math anxiety and executive function: Neural influences of task switching on arithmetic processing. Cognitive, Affective, & Behavioral Neuroscience, 20(2), 309-325. |
[35] |
Pletzer B., Kronbichler M., Nuerk H. C., & Kerschbaum H. H. (2015). Mathematics anxiety reduces default mode network deactivation in response to numerical tasks. Frontiers in Human Neuroscience, 9, 202.
doi: 10.3389/fnhum.2015.00202 pmid: 25954179 |
[36] | Raven J. C., & Court. J. H. (1998). Raven's progressive matrices and vocabulary scales. Oxford, UK: Oxford Psychologists Press. |
[37] | Rittle-Johnson B., & Siegler R. S. (1998). The relation between conceptual and procedural knowledge in learning mathematics:A review. In C. Donlan (Ed.), Studies in developmental psychology. The development of mathematical skills (p. 75-110). Psychology Press/ Taylor & Francis (UK). |
[38] |
Rittle-Johnson B., Siegler R. S., & Alibali M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93(2), 346.
doi: 10.1037/0022-0663.93.2.346 URL |
[39] |
Sarkar A., Dowker A., & Kadosh R. C. (2014). Cognitive enhancement or cognitive cost: trait-specific outcomes of brain stimulation in the case of mathematics anxiety. Journal of Neuroscience, 34(50), 16605-16610.
doi: 10.1523/JNEUROSCI.3129-14.2014 pmid: 25505313 |
[40] |
Siegel L. S., & Ryan E. B. (1988). Development of grammatical-sensitivity, phonological, and short-term-memory skills in normally achieving and learning-disabled children. Developmental Psychology, 24(1), 28-37.
doi: 10.1037/0012-1649.24.1.28 URL |
[41] |
So D., & Siegel L. S. (1997). Learning to read Chinese: Semantic, syntactic, phonological and working memory skills in normally achieving and poor Chinese readers. Reading and Writing, 9(1), 1-21.
doi: 10.1023/A:1007963513853 URL |
[42] |
Somerville L. H., Wagner D. D., Wig G. S., Moran J. M., Whalen P. J., & Kelley W. M. (2013). Interactions between transient and sustained neural signals support the generation and regulation of anxious emotion. Cerebral Cortex, 23(1), 49-60.
doi: 10.1093/cercor/bhr373 URL |
[43] | Spielberger C. D., Gorsuch R. L., Lushene R., Vagg P. R., & Jacobs G. A. (1983). Manual for the state-trait anxiety scale. Palo Alto, CA: Consulting Psychologists Press. |
[44] |
Suinn R. M., & Winston E. H. (2003). The mathematics anxiety rating scale, a brief version: psychometric data. Psychological Reports, 92(1), 167-173.
pmid: 12674278 |
[45] |
Sylvester C. M., Corbetta M., Raichle M. E., Rodebaugh T. L., Schlaggar B. L., Sheline Y. I.,... Lenze E. J. (2012). Functional network dysfunction in anxiety and anxiety disorders. Trends in Neurosciences, 35(9), 527-535.
doi: 10.1016/j.tins.2012.04.012 pmid: 22658924 |
[46] |
Wei W., Yuan H., Chen C., & Zhou X. (2012). Cognitive correlates of performance in advanced mathematics. British Journal of Educational Psychology, 82(1), 157-181.
doi: 10.1111/bjep.2012.82.issue-1 URL |
[47] |
Wu C. Y., Ho M. H. R., & Chen S. H. A. (2012). A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing. Neuroimage, 63(1), 381-391.
doi: 10.1016/j.neuroimage.2012.06.047 URL |
[48] | Yan C., & Zang Y. (2010). DPARSF: a MATLAB toolbox for" pipeline" data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13. |
[49] |
Yan C. G., Craddock R. C., Zuo X. N., Zang Y. F., & Milham M. P. (2013). Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes. Neuroimage, 80, 246-262.
doi: 10.1016/j.neuroimage.2013.04.081 URL |
[50] |
Young C. B., Wu S. S., & Menon V. (2012). The neurodevelopmental basis of math anxiety. Psychological Science, 23(5), 492-501.
doi: 10.1177/0956797611429134 pmid: 22434239 |
[51] |
Zhang H., Chen C., & Zhou X. (2012). Neural correlates of numbers and mathematical terms. Neuroimage, 60(1), 230-240.
doi: 10.1016/j.neuroimage.2011.12.006 pmid: 22202882 |
[52] |
Zhang J., Zhao N., & Kong Q. P. (2019). The relationship between math anxiety and math performance: A meta-analytic investigation. Frontiers in Psychology, 10, 1613.
doi: 10.3389/fpsyg.2019.01613 pmid: 31447719 |
[53] |
Zhou X., Wei W., Zhang Y., Cui J., & Chen C. (2015). Visual perception can account for the close relation between numerosity processing and computational fluency. Frontiers in Psychology, 6, 1364. https://doi.org/10.3389/fpsyg.2015.01364.
doi: 10.3389/fpsyg.2015.01364 URL pmid: 26441740 |
[1] | LI Yu, WEI Dongtao, QIU Jiang. Personality subtypes of depressive disorders and their functional connectivity basis [J]. Acta Psychologica Sinica, 2023, 55(5): 740-751. |
[2] | LI Wei, BIAN Ziming, CHEN Ximei, WANG Junjie, LUO Yijun, LIU Yong, SONG Shiqing, GAO Xiao, CHEN Hong. The relationship between frontotemporal regions and early life stress in children aged 9 to 12: Evidence from multimodal fMRI [J]. Acta Psychologica Sinica, 2023, 55(4): 572-587. |
[3] | JIN Hua, JIA Lina, YIN Xiaojuan, YAN Shizhen, WEI Shilin, CHEN Juntao. The neural basis of the continued influence effect of misinformation [J]. Acta Psychologica Sinica, 2022, 54(4): 343-354. |
[4] | CAI Huiyan, MIAO Xin, LIN Zhiwei, WANG Mengcheng, YANG Wendeng, LI Jiayi, MA Yankun, WANG Pengfei, ZENG Hong. Structural and functional characteristics of impulsive-related brain regions in heroin addicts with long-term withdrawal [J]. Acta Psychologica Sinica, 2021, 53(8): 861-874. |
[5] | LI Yiman, LIU Cheng, ZHUANG Kaixiang, HUO Tengbin, XU Pengfei, LUO Yuejia, QIU Jiang. The influence of personality traits and brain functional connectivity on social networks [J]. Acta Psychologica Sinica, 2021, 53(12): 1335-1347. |
[6] | CUI Fang, YANG Jiamiao, GU Ruolei, LIU Jie. Functional connectivities of the right temporoparietal junction and moral network predict social framing effect: Evidence from resting-state fMRI [J]. Acta Psychologica Sinica, 2021, 53(1): 55-66. |
[7] | Qi JIANG, Lulu HOU, Jiang QIU, Changran LI, Huanzhen WANG. The relationship between the caudate nucleus-orbitomedial prefrontal cortex connectivity and reactive aggression: A resting-state fMRI study [J]. Acta Psychologica Sinica, 2018, 50(6): 655-666. |
[8] | SI Jiwei; XU Yanli; FENG Hongmin; XU Xiaohua; ZHOU Chao. Differences of Arithmetic Strategy Use in Adults with Different Math Anxieties: An ERP Study [J]. Acta Psychologica Sinica, 2014, 46(12): 1835-1849. |
[9] | LIU Hongyun;LUO Fang;ZHANG Yu;ZHANG Danhui. Mediation Analysis for Ordinal Outcome Variables [J]. Acta Psychologica Sinica, 2013, 45(12): 1431-1442. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||